ON THE NUMBER OF MINIMAL PRIME IDEALS IN THE COMPLETION OF A LOCAL DOMAIN

DANIEL KATZ

Let R be a local Noetherian domain. It is well-known that the number of minimal prime ideals in the completion of R is greater than or equal to the number of maximal ideals in the integral closure of R. An (unproved) exercise in [2] states that the reverse inequality holds if R is one-dimensional. The purpose of this note is to show how this latter fact can be generalized to local domains of dimension greater than one. Specifically, let x_1, \ldots, x_d be a system of parameters for R and set

$$T = R\left[\frac{x_2}{x_1}, \cdots, \frac{x_d}{x_1}\right]_{MR\left[\frac{x_2}{x_1}, \cdots, \frac{x_d}{x_1}\right]}$$

(*M* is the maximal ideal of *R*). We will show that if *R* is quasi-unmixed, then the number of maximal ideals in the integral closure of *T* is greater than or equal to the number of minimal prime ideals in the completion of *R*. As a corollary we deduce a criterion for local domains to be analytically irreducible and we close with a bound for the number of minimal prime ideals in the completion of *R* in the non-quasi-unmixed case.

NOTATION. Throughout, (R, M) will denote a local Noetherian ring with maximal ideal M. We will use "—" to denote integral closure—both for rings and ideals. Recall that for an ideal $I \subseteq R$, \overline{I} , the integral closure of I, is the set of elements $x \in R$ satisfying an equation of the form

$$x^n + i_1 x^{n-1} + \cdots + i_n = 0, \quad i_k \in I^k, \ 1 \le k \le n.$$

It is well-known that \overline{I} is an ideal of R contained in the radical of I. We will use "*" to denote the completion of a local ring. Recall that a local ring R is quasi-unmixed in case dim $R^*/p^* = \dim R$, for all minimal primes $p^* \subseteq R^*$. Any other standard facts or terminology from local ring theory appear here as they do in [2].

REMARK. Lemmas 1 and 2 below are more or less well-known, but we have included their easy proofs for the sake of exposition.

LEMMA 1. (c.f. [6, p. 354]): Let R be a Noetherian domain and $I \subseteq R$

an ideal. Write $I = (x_1, \ldots, x_d)$ and set $S_i = R[x_1/x_i, \ldots, x_d/x_i]$. Then for all $n \ge 1$ $\overline{I^n} = \bigcap_{i=1}^d [\overline{I^nS_i} \cap R]$.

PROOF. Let $V \supseteq R$ be a valuation domain. There exists an *i* such that $S_i \subseteq V$. Since $I^n V$ is principal and V is integrally closed, $\overline{I^n V} = I^n V$. Therefore $\overline{I^n S_i} \subseteq I^n V$. Since $\overline{I^n} = \bigcap [I^n V \cap R]$, the intersection ranging over all valuation domains $V \supseteq R$ [6], the result follows.

LEMMA 2. Let R be a local ring and $I \subseteq R$ an ideal. Then

$$\bigcap_{n\geq 1}\overline{I^n} = \operatorname{nil} \operatorname{rad} (R).$$

PROOF. Clearly nil rad $(R) \subseteq \bigcap_{n \ge 1} \overline{I^n}$. To show $\bigcap_{n \ge 1} \overline{I^n} \subseteq$ nil rad (R), observe that an element $x \in R$ belongs to I^n if and only if the image of x in R/p belongs to $(\overline{I^n + p/p})$ for all minimal primes $p \subseteq R$. Consequently we may assume that R is a domain and show $\bigcap_{n \ge 1} \overline{I^n} = 0$. Since R is Noetherian, a theorem of Chevally implies that there exists a DVR V containing R with $IV \neq V$. Since V is integrally closed and I^nV is principal, $\overline{I^n V} = I^n V$. Therefore $\bigcap_{n \ge 1} \overline{I^n} \subseteq \bigcap_{n \ge 1} I^n V = 0$.

PROPOSITION 3. Let (R, M) be a quasi-unmixed local domain. Let x_1, \ldots, x_d be a system of parameters, set $I = (x_1, \ldots, x_d)$ and

$$T = R\left[\frac{x_2}{x_1}, \cdots, \frac{x_d}{x_1}\right]_{MR\left[\frac{x_2}{x_1}, \cdots, \frac{x_d}{x_1}\right]}$$

Suppose that M_1, \ldots, M_k are the maximal ideals in \overline{T} . Then, for all $n \ge 1$, $\overline{I^n} = \bigcap_{i=1}^k (I^n \overline{T}_{M_i} \cap R)$.

PROOF. Let $n \ge 1$. Since $I^n T$ is principal, $\overline{I^n T} = I^n \overline{T} \cap T$. Moreover, since \overline{T} is a Krull domain (in fact a Dedekind domain, since T is onedimensional) $\bigcap_{i=1}^{k} (I^n \overline{T}_{M_i} \cap \overline{T}) = I^n \overline{T}$, as the M_i are precisely the prime divisors of $I^n \overline{T}$. Therefore $\bigcap_{i=1}^{k} (I^n \overline{T}_{M_i} \cap T) = \overline{I^n T}$. Thus, by Lemma 1, it suffices to show that $\overline{I^n T} \cap S_i = \overline{I^n S_i}$ for all $i = 1, \ldots, d$, where $S_i = R[x_1/x_i, \ldots, x_d/x_i]$. Since x_1, \ldots, x_d are analytically independent, each $x_j/x_i \notin MS_i$. So $S_{iMS_i} = T$. As localization commutes with integral closure, we will be done if we show that $\overline{I^n S_i}$ is MS_i -primary. Suppose Qis a prime divisor of $\overline{I^n S_i}$. Since R is quasi-unmixed, S is locally quasiunmixed [3, 2.5]. Therefore, by [4, Theorem 2.12], height Q = 1 (I^nS_i is principal). Since MS_i is the unique height one prime in S_i containing I^nS_i (this is well-known), we have $Q = MS_i$. Thus $\overline{I^nS_i}$ is MS_i -primary and the proposition is proved.

THEOREM 4. Let (R, M) be a quasi-unmixed local domain. Let x_1, \ldots, x_d be a system of parameters and set

$$T = R\left[\frac{x_2}{x_1}, \ldots, \frac{x_d}{x_1}\right]_{MR\left[\frac{x_2}{x_1}, \cdots, \frac{x_d}{x_1}\right]}$$

Let r and k respectively denote the number of maximal ideals in \overline{R} and \overline{T} . Then $r \leq$ number of minimal prime ideals in $R^* \leq k$.

PROOF. The first inequality follows from the proof of (33.10) in [2]. For the second inequality, let M_1, \ldots, M_k be the maximal ideals in \overline{T} and set $T_i = \overline{T}_{M_i}$. Then for each $i = 1, \ldots, k$ there is a natural map of *M*-adic completions $\varphi_i: \mathbb{R}^* \to T_i^*$. In fact, if we set $I = (x_1, \ldots, x_d)$ then, since *I* is *M*-primary in *R* and $M_i T_i$ -primary in each T_i , we may view these completions as being with respect to the *I*-adic topology. We will show $\bigcap_{i=1}^{k} \ker \varphi_i \subseteq \operatorname{nil} \operatorname{rad}(\mathbb{R}^*)$. The theorem will readily follow from this. Indeed, it suffices to note that since each T_i^* is a domain (in fact, a DVR) each ker φ_i is prime. Of course any collection of primes whose intersection is contained in nil rad (\mathbb{R}^*) must include the minimal primes of \mathbb{R}^* .

Now suppose $x^* \in \bigcap_{i=1}^k \ker \varphi_i$. We may select a sequence of elements $\{x_n\}$ in R such that $x^* - x_n \in I^n R^*$. The choice of x^* implies that for each $i = 1, \ldots, k \{x_n\}$ is a null sequence in T_i with respect to the IT_i -adic topology. Therefore, after suitably refining the sequence $\{x_n\}$ we may further assume that $x_n \in I^n T_i$ for all n and all i. By Proposition 3, $x_n \in \overline{I^n}$ for all n. Therefore $x^* = x_n + x^* - x_n \in \overline{I^n}R^* + I^nR^* \subseteq \overline{I^n}R^*$ for all n. By Lemma 2, x^* is nilpotent.

COROLLARY 5. (cf. [2; Exercise 1, page 122]). Let R be a one-dimensional local domain. Then the number of minimal prime ideals in R^* is equal to the number of maximal ideals in \overline{R} .

PROOF. Since a one-dimensional local domain is quasi-unmixed, and T in Theorem 4 is just R, the result follows.

The next corollary is a criterion for a local domain to be analytically irreducible. It is an immediate consequence of Theorem 4 and the definitions.

COROLLARY 6. Let R and T be as in Theorem 4. Assume further that R is analytically unramified. If \overline{T} is local, then R is analytically irreducible.

REMARK. If R is a localization of a finitely generated algebra over a field or the integers, then R is quasi-unmixed and analytically unramified. Hence Corollary 6 applies to most of the local rings from geometry.

Our final proposition uses Rees rings, rather than overrings to bound the number of minimal prime ideals in R^* .

PROPOSITION 7. Let (R, M) be a local domain and $I \subseteq R$ an M-primary ideal. Write $\mathcal{R} = R[It, t^{-1}]$, t an indeterminate, for the Rees ring of R with respect to I. Then the number of minimal prime ideals in R^* is less than

or equal to the number of prime divisors of $t^{-1}\overline{\mathcal{R}}$. In particular, if R is analytically unramified and $t^{-1}\overline{\mathcal{R}}$ is primary, then R is analytically irreducible.

PROOF. Let $\mathscr{P}_1, \ldots, \mathscr{P}_k$ be the prime divisors of $t^{-1}\overline{\mathscr{R}}$ and set $V_i = \mathscr{R}_{\mathscr{P}_i}$ (since $\overline{\mathscr{R}}$ is a Krull domain there are finitely many \mathscr{P}_i and each V_i is a DVR). Since $t^{-n}\overline{\mathscr{R}} \cap R = \overline{I^n}$ it follows that $\bigcap_{i=1}^k t^{-n}V_i \cap R = \overline{I^n}$ for all *n*. Let $\phi_i \colon R^* \to V_i^*$ be the natural map (where R^* is viewed as the *I*-adic completion of *R* and V_i^* as the t^{-1} -adic completion of *V*_i). Then just as in the proof of Theorem 4 one shows $\bigcap_{i=1}^k \ker \phi_i \subseteq \operatorname{nil} \operatorname{rad}(R^*)$ and the proposition follows.

REMARK. In case R is quasi-unmixed and I is generated by a system of parameters, it can be shown that there is a one-to-one correspondence between the prime divisors of $t^{-1}\overline{\mathcal{R}}$ and the maximal ideals of \overline{T} (for T as in Theorem 4). Thus Theorem 4 can be recovered from Proposition 7.

REFERENCES

1. E. D. Davis, Ideals of the principal class, R-sequences and a certain monoidal transformation, Pac. J1. Math. 20 (1967), 197-205

2. M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics 1962.

3. L. J. Ratliff Jr., On quasi-unmixed semi-local rings and the altitude formula, Am. J1. of Math. 87 (1965), 278-284.

4. L. J. Ratliff Jr., Locally quasi-unmixed Noetherian rings and ideals of the principal class, Pac. J1. Math. 52 (1974), 185–205.

5. D. Rees, A note on analytically unramified local rings, J1. London Math. Soc. 36 (1961), 24-28.

6. O. Zariski and P. Samuel, *Commutative Algebra*, Vol. II, D. van Nostrand Co., Inc., 1960.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66045